您的当前位置:首页正文

Deliverable D5.4 Mathematical Knowledge Management and searchability Project Acronym MKM-NE

来源:要发发知识网
INFORMATIONSOCIETYTECHNOLOGIES

(IST)

PROGRAMME

ProjectIST-2001-37057MKM-NET

DeliverableD5.4

MathematicalKnowledgeManagementandsearchability

I.Dahn(UniversityofKoblenz-Landau)A.Asperti(UniversityofBologna)

ProjectAcronym:MKM-NET

Proposal/Contractno.:IST-2001-37057MKM-NET

MKM-NET,IST-2001-37057Contents

1Introduction2FulltextSearch3Semi-textualsearch4SemanticSearchforTerms5Fastfilteringofthesearchspace6SemanticSearchforKnowledge7KeyPhraseSearch

8ExploitingSemanticRelations9

Summary

2

333455678

MKM-NET,IST-2001-370573

1Introduction

Inthisdocumentwedescribethestateoftheartforsearchingmathematicalcontent.WedonotdiscussgeneralstandardsfordocumentmarkupsuchasDublinCoreorZ39.50.

Mathematicalcontentisusuallysearchedbypeoplewhointendtoretrievespecificcontentforspecificpurposes.Ultimatelythesepurposesdeterminewhetheracertainretrieveditemisappropriateornot.Theultimategoalofsearchproceduresisnormallytoretrieveexactlythecontentthatisrequired.

Inthisrespectsearchingformathematicalcontentisnotdifferentfromsearchingforanyothercontent.But,themajorproblemishowtoanalyzetheavailablecontentandhowtodescribeitinaformatthatcanbeutilizedbysearchengines.

Intheremainderofthisdocumentwediscussandevaluateanumberofapproachestosearchingmathe-maticalcontentrangingfrombasictextualmethodsthroughtosemantics-driventechniques.

2FulltextSearch

Fulltextsearchisthesimplestmethod.Formathematicalcontentthismethodisespeciallylimitedsinceimportantpartsofthecontentconsistofformulas.Tobeofpracticaluse,itmustbeeasyfortheusertoenterthecontenttobesearchedfor.Butwhereformulasareinvolved,thisisnotstraightforward,althoughthereare

ATXshells–whichcanhelp,theyareyettobeintegratedintoafewtools–computeralgebrasystemsandLE

theinterfacesforsearchingmathematicalcontent.

ATX–thelanguagemostlyEveniftheuserwerecapableofenteringthedescriptionofaformulainLE

commonlyusedbyauthorsofmathematicaldocuments–thecorrespondingcontentmaynotbefoundsince

ATXmacro.theauthormayhaveexpressedtheformuladifferently,forexampleusinghisownuser-definedLEATX.AlsoforspecialcharacterslikeGermanumlautsthereareseveralpossibilitiesforannotationinLE

Inordertosupportfullyeventhisuncomfortableapproachtofulltextsearch,theencodingofformulasandspecialcharactersmustbestandardized,macrosmustbeexpandedandsearchrequestshavetobetranslatedaccordingly–forexampletranslatingumlautsintotheirstandardencoding.Theimplicationisthatitisnecessarytopreprocessdocumentsbeforetheycanbesearched.

Insomedocumentrepresentations,fulltextsearchforformulasbecomesimpossible,whenforexample

ATXtoHTML,suchformulasarerepresentedasimages.ThistechniqueisusedbypopularconvertersfromLE

asTeX4HtandLeTeX2HTML.

Althoughithasmanyinadequacies,fulltextsearchisnotentirelyuseless.Theresaonisthat,inmathe-maticaldocumentsknowledgeisfrequentlyexpressedasamixtureoftextandformulassuchas:

“IfAandBaregroups,thenA⊗B⊗Aisagrouptoo.”

Inthisexample,fulltextsearchcouldrevealthatthesentencetalksaboutgroupsbutitcouldnotreadilydetectthemoreimportantfactabouttheconstruction(denotedby⊗).

3Semi-textualsearch

Fulltextsearchbehavesbetterwhenthestructureoftheinformationisrelativelyrigid.Forinstance,greporsimilartoolshaveprovedtobeveryeffectiveintherealmofcomputerscience,wherethestructureoftextualdocuments(typicallyaprogram,ortheoutputofaprogram)ismuchmoreregularthanthatoftheeverydaymathematicallanguage.

AninterestingexperimentinbuildingasemanticbasedretrievalsystemintegratedwithgrephasbeenconductedaspartoftheMizarproject[2].Mizarisalong-termprojectaimedatbuildingacomprehensivelibraryofformalmathematicalknowledge(MizarMathematicalLibrary–MML)expressedbymeansofasuitable,semi-naturallanguage.Thegrammarofthislanguageissufficientlyflexibletoovercomemostoftheusualandannoyinglimitationsofformalmathematics;ontheotheritisstillsufficientlyrigidtoallowsignificanttextualqueries.Theproposedlanguageisbasedonawidesetofprimitiveoperations(returning

MKM-NET,IST-2001-370574

foreacharticlethesetofconceptsintroducedinit,orforeachmathematicalitemthesetofallotheritemswhicharereferencedinit,orwhichuseit,justtogiveafewexamples).Typicaloperationsoverlists,suchasunion,merge,filterandsoonallowtheconstructionofcomplexcompoundqueries.Themainfilteringoperationisstilltextual,directlycallinggrep.

TheworkonsemanticbasedretrievalinMMLhasonlyrecentlystarted.Theimportanceofsophisticatedtoolsforbrowsingandsearchinghasbecomeapparentinsomesub-projectswithinMizarwhichinvolvemanyauthorsandmanyarticles.Thecurrent,stillexperimental,implementationturnedouttobeveryhelpful,providingsearchingfunctionalitiesimpossiblewithapurelytextualsearch.Aproblemofthelanguage,atleastinitspresentversion,isthatitisclearlygearedtowardadvancedMizarusers.

4SemanticSearchforTerms

Unliketextfromotherfields,mathematicaltexthasastandardsemanticsagreedbymostpractitioners.Itisthereforepossibletoimprovethesearchpossibilitiesbytakingadvantageofthisstandardsemantics.OMDocspecifiesastandardwayforsupportingthisandMBase[9]isaspecificdatabasesupportingthesemanticretrievalofterms.

ThebasicideaofOMDocistospecifythewayinwhichmathematicaltextisaugmentedbyadescriptionofitsmeaning.Potentiallyitbecomesevenpossibletoomitthetextandtogenerateitondemandfromthesemanticdescription.Writingthesesemanticdescriptionsisnotaneasytaskandhassofarbeenaccom-plishedonlyforasmallsetofsampledocuments.Therequiredexpertiseisnotavailableformostworkingmathematiciansandsupportingtoolsarestillatanearlystageoftheirdevelopment.

However,onceestablished,theavailabilityofthesemanticannotationopensupanewclassofpossibilitiesforsearchingmathematicalcontent.Forexample,itbecomespossibletosearchforasymbol,say⊗,andtodistinguishbetweenitsuseasthedenotationforacartesianproductofgroupsfromitsuseforvectorproduct.

Notethatfortheusertheproblemofeasyqueryentryremainsandisfurthercomplicatedbytheneedtospecifythecontextinwhichthequerymaybesatisfied.Aparticularsituationwherethiscanbemadesimplerfortheuseriswhenthesearchcanberelatedtosomecurrentcontent,thatistodeterminethecontextualconstraintfromthequeryorigincontext.

Inthiscasetheusermaycopythesubjectofinterestintoasearchtemplateandthecopymechanismcanensurethatallrelevantsemanticinformationistransferredaswell.Whensearchisrestrictedtoselectedcontentobjectsonly,theseselectedobjectsmaybepresentedinadocumentaslinks.Aclickonsuchalinkcantheninitiateasearchforspecificrelatedcontent.TheActiveMathsystem,developedatDFKIinSaarbr¨ucken,usesthistechniquetotolinkeachoccurrenceofasymbolinadocumenttoitsdefinition.

Besidessearchingforwell-definedformulas,addingsemanticannotationoffersthepossibilityofretrievinginstancesoftemplates.Forexampleasearchfor“X⊗Y⊗X”,whereXandYarevariables(wildcards)inthetemplate,willretrieveA⊗B⊗AaswellasA⊗(B⊗C)⊗AandB⊗A⊗BbutnotA⊗B⊗C.

Notehoweverthattheexactbehaviourofthissemantictemplatesearchdependsonthestandardizationofthesearchsemanticsandthattheuserhastobeawareofit.ForexampleifthestandardsemanticsofX⊗Y⊗Zis(X⊗Y)⊗Z,asearchfor“X⊗Y⊗X”willfind(A⊗B)⊗AbutnotA⊗(B⊗A)thoughbothexpressionsaresemanticallyequivalentinthecasethat⊗isassociative.Totakeaccountofthis,itwouldbenecessaryeithertoaddalsoallsemanticallyequivalentannotations(whichisinfeasiblebecausetheremightbeinfinitelymanyequivalentforms)orthesearchenginehastotestsimilarlocatedcontenton-the-flyforsemanticequivalence.Theintegrationofacomputeralgebrasystemintoasearchenginemayprovideawaytorealizethis,butresourcedemandswillbeconsiderable.

Itmayinfactevendependonthepurposeofthesearchwhetheritisdesirabletoretrievesemanticallyequivalentcontent.Forabeginnerwhostillhastolearnthattheoperation⊗iscommutativeitmaynotbedesirabletoretrieveB⊗A2whensearchingfor“X⊗Y⊗X”whileanexperienceduserwouldwelcomeitifthesearchengineallowsforseveralvariantsofsearchrequests.Currentlythereisnotenoughpracticalexperiencetodecidehowauserinterfaceshouldbedesignedtomakethelargevarietyofpossiblesearchvariantsenabledbysemanticsearchtotheuser.

MKM-NET,IST-2001-370575

5Fastfilteringofthesearchspace

Itisnotuncommontorequireunificationinordertoprocessthesortofsemanticqueriesinwhichweareinterested.Assuch,wearemakingdemandswhichconventionaldatabasequerylanguagescannotmeet.Aworkaroundisthereforetoapplyaunificationprocessexternallyonasetofcandidatematchesanditbecomesessentialtobeabletofilterthedatacomingoutoftherepositoryveryrapidlyinordertoproduceareasonablysmallsetofcandidates.

Tosolvethisproblem,theHELMgroupinBolognahasproposedanapproach[6]basedonfourdistinctphases:

•Data-mining:asmallsetofmetadataisautomaticallycomputedfromeachtheoremordefinitioninthelibrary,providinganapproximationofitsactualcontent.

•Patterncompilation:whentheusersubmitsasemanticquery,thisistranslatedintoasetofconstraintsoverthemetadataandthencompiledintoalow-levelquery.

•Filtering:thelow-levelqueryisexecutedoverthedatabaseofmetadata,obtainingasetofcandidates.•Matching:theactualsemanticqueryisiteratedoverallcandidates,obtainingapreciseresultset.

Ifthefilteringoperationisbothquickandcorrect(inthesensethatnogoodcandidatesaredropped),thepreviousapproachachievesbothaccuracyandperformance.Moreover,itisextremelymodular:extendingthemetadatasetweimprovetheaccuracyoftheapproximation,andaretypicallyabletocopewithmorecomplexsemanticqueries.

TheMetadatausedbytheHELMgroupareessentiallyrelationsexpressingthatagivenmathematicalitemreferstoanotheritematagivenposition.Moreover,anextremelysimplesetofcrucialpositiondescriptorshasbeenidentified,coveringaverylargesetofqueriesofcommoninterest.

Atypicalunificationqueryistranslatedintoatwosetsofconstraints,providingalowerandanupperboundforthecandidates.Inparticular,allcandidatesmustbemoreinstantiatedthanwhatisrequiredtosatisfythesocalledmustconstraints,butlessinstantiatedthanrequiredtomeettheonlycontraints.Theprecisegenerationofmustandonlyconstraintsdependsontheparticularformofunificationinwhichtheuserisinterested.

Themanagementofmustandonlyconstraintstypicallyrequiressetcomparisonoperationsthatarenotavailableintraditionalrelationalquerylanguages.Forthisreason,anew(RDF-based)querylanguagehasalsobeendesignedandimplemented[5,7].

AnextensivestatisticalanalysishasbeenperformedoverthelibraryoftheCoqProofAssistant[1],inordertovalidatethemetadatamodel,tomeasureitsscalabilityandtotestitsdiscriminatorypower.

Theexperimentshavebeenquitesuccessful,andtheapproachlooksextremelypromising,butitremainstobeseenwhethertheapproachcanbeeffectivelyappliedinthecontextofautomatictheoremproving.

6SemanticSearchforKnowledge

Itisnotonlyformulas(terms)butalsomanynaturallanguagesentencesinmathematicaldocumentsthathaveaprecisemeaning.Letusconsideragainthesentence“ifAandBaregroups,thenA⊗B⊗Aisagrouptoo”.Thiscanformalizedas

group(A)∧group(B)⇒group(A⊗B⊗A).

ThussearchingforthetemplateX⇒group(Y⊗Z⊗U)whereX,Y,Z,UarevariablesinthetemplatewouldyieldthesamplesentenceinthedatabasethatAandBbeinggroupsisasufficientconditionforA⊗B⊗Abeingagroup.

But,thissearchwouldfailifthesemanticsofthesentencewereannotatedintheequivalentform“IfAisagroupandA⊗B⊗Aisnotagroup,thenBisnotagroup”

group(A)∧¬group(A⊗B⊗A)⇒¬group(B).

Atraditional(butexpensive)approach[4]tothisproblemistoidentifystatementsuptoisomorphisms(thatis,essentially,statementshavingasame,suitablenormalform).Thetheoryoftypeisomorphismisvery

MKM-NET,IST-2001-370576

interestingandquiteentangled,butunfortunatelyalsoquiteexpensivetoimplement.Moreover,ingeneral,itisnotexpressiveenoughtocaptureotherinterestingcases,suchasthesimpleexpansionofadefinition:justconsiderforinstancethetwologicallyequivalentsentences(a)xispositiveand(b)x>0.

In1997theILFsystemdevelopedattheHumboldtUniversityBerlinwithintheDFGfocusprogramme“Deduction”wasusedtohandlethisprobleminthefollowingway.

Firstofalltheobjectiveofthesearchwasreinterpreted.Itwasnolongerthegoaltofindoutwhetheracertainsentencecouldberetrievedfromtheknowledgebaseexactlyasentered.Ratherthegoalbecametofindoutwhethertheformulaenteredwasasemanticconsequenceoftheknowledgethatwasinthedatabase.

Todecidethis,firstthesentenceentered1bytheuserwasanalysedtodeterminethesymbolsitcontained.Secondly,anordinarydatabaserequestwasmadetoretrieveallcontentusingonlythesesymbolsandpossiblyarelatedsetofauxiliarysymbolssuchastheequalitysymbol.Thirdly,twoautomatictheoremproverswerelaunchedincompetitionwithoneanothergiventhegoalofprovingthephraseenteredbytheuserfromtheretrievedformulasinalimitedtime(30secondsinthisexperiment).

Ifoneoftheproverswassuccessful,thegeneratedproofwasanalyzedandallretrievedsentencesthathadactuallybeenusedintheproofoftheconjectureoftheuserwerereturned.Inthiscasetheuserreceivedtheinformationthattheirconjecturecanbeeasilyprovedfromtheseretrievedformulas.Ofcourse,thespecialcasethattheformulaenteredwasexactlylikeoralogicalvariantofoneinthedatabaseishandledbythisprocedureaswell.

Ifnoprovergeneratedaproofinthelimitedavailabletime,theuserwasinformedthatthesearchwasnotsuccessfulbutthatseveralrelatedformulaswerefoundinthedatabasesothattheusercouldexaminethemandattempttoverifytheconjecture.

Thepurposeofusingtwotheoremproversintheseexperimentswasjusttoevaluatethepowerofdifferentproversforthesesearchtasks.Theexperimentsusedthestrongestfirstordertheoremproversavailableatthattimeonadatabaseof100formalizedtheoremsfromtheMizarlibrary.Thoughthesearchwashighlyflexibleandfairlytoleranttovariationsinuserinputitwasapparentthatitwouldnotscaleupwithcurrentautomatedprovers.Themainreasonforthisisthatcurrentprovers,beingtailoredforfirstorderlogic,donotmakeefficientuseofthetypeinformationcontainedintheformalizedknowledge.Anotherproblemisthatthesearchspacegrowsexponentiallywiththenumberofcandidateformulasthatcanbeusedintheproof.Heremorerefinedpreprocessingandsemanticfilteringtechniqueswillhavetobedeveloped.Alsomodifyingthetasksothatonlyasingleformulaequivalenttotheuser’sconjecturehastobefoundcouldprovidehigherefficiencybyparallelizingtheresultingprooftasks.

Itshouldbealsonotedthatbyusingfirstorderproversitisnotpossibletosearchagainstatemplatewhereoneofthevariablesstandsforacompletesub-formulaandisthusahigherordervariable.Therearehigherorderproverswhocanhandlesuchrequests,butthesearchspacetheyhavetohandlewillbestillmorecomplex.

7KeyPhraseSearch

Allsearchproceduresdiscussedsofarcheckonlyfortheoccurrenceofsomemathematicalcontent.Theyarenotabletoevaluatetherelevanceoftheoccurrencesfound.Forexampleausersearchingforthecartesianproductsymbol⊗mayfindhundredsofplaceswherethissymbolisusedasanauxiliaryoperator,thoughhewaspossiblyonlyinterestedinseeingitsdefinitionanditsmostbasicproperties.

Currentlythereisnoconvincingwaytofindoutautomaticallywhatacertainpieceofcontentisactuallydescribing.Thisisinpartduetotheproblemsofanalyzingformulaswhichhavebeendiscussedabove.

Howeverithappensfrequentlythattheconceptsthatareexplainedbyapieceofcontentsimplydonotoccurintheactualtext.Thisphenomenoniswellknownalsofromnon-mathematicaltextswherekeyphrasesfromanindex,characterizingwhatatextisabout,donotnecessarilyoccurinthetextitself.

MKM-NET,IST-2001-370577

Automatedindexingtechniquestrytosolvethisproblembyanalyzingthetextandcomparingthewordsfoundwiththewordsinotherdocumentsthathavebeenmanuallyindexedbeforehand.WeakenrichedthesauriasdevelopedatCWIinAmsterdamareanexampleofthesemethods.Herekeyphrasesareassignedbasedontheoccurrenceofspecificgroupsofwords.Othermethodsusestatisticaldata.

Allthesemethodssharetheproblemthatimportantinformationisnotcontainedinthetextbutintheformulaswhichcannotbeanalyzedthisway.Theyfallshortofdeliveringresultsthatareusefulfortheenduser.[8]givesasurveyofthecurrentstateoftheapplicationofweakenrichedthesauriformathematicaldocumentsandderivesdirectionsforfurtherresearchfromthecurrentstate.Evenifautomatedindexingtechniquesarecurrentlynotusablestandaloneformathematicaldocuments,theymayprovidehintsformanualindexingbypointingtheindexertopotentiallyrelevantkeyphrasesfromanexistingthesaurus.

Mathematicshastheadvantageofpossessingastandardsubjectclassification,MSC2000,thatisgenerallyagreedbythemathematicalcommunity.Thisclassification,however,describesonlyratherlargesubtopicsofMathematics.Thereforeitcanbeusedtoclassifydocumentsbutitisinappropriatetoretrievecontentfromwithinthesedocuments.

BuildingandmaintainingastandardthesaurusforMathematicsthatislinkedwiththeMathematicsSub-jectClassificationisanurgentneed.WithintheISTprojectTrial-Solution,FIZKarlsruhehasstartedworktowardsthisbasedonkeyphrasesassignedbyauthorsof19mathematicalbooksandbyadditionalkeyphrasesassignedfromwithintheproject–thislatterworkismainlydoneattheMathematicalInstituteoftheTech-nicalUniversityinChemnitz.Theprojectthesaurushasca.6,000keyphrasesandFIZprovidessupportforaddingnewkeyphrasestothethesaurusinaconsistentway.

Keyphrasesearchcanbemorerefinedwhenitiscombinedwithsearchforspecifictypesofinformation.Forexampleinordertoprepareanexam,thetutorwillsearchforexercisesonatopicwherethetopicitselfischaracterizedbyacollectionofkeyphrases.

Keyphrasesarealsoasimplemethodtofindcontentfromotherdocumentsthatisrelatedtogivenpiecesofcontent.Whenamultilingualthesaurusisavailableitisalsopossiblethatausersearchesforkeyphrasesinhisnativelanguagebutretrievesalsocontentinotherlanguageswhichshemayunderstandevenwithoutknowingtheappropriatesearchphrasesinthatlanguage.

Keyphrasesaremetadatathatdescribecontent.Whenmathematicalknowledgeistoberetrieveditis,however,notonlythecontentthatmatters.Whenitistobeusedforteachingitisalsousefultosearchforcontentthathasbeenpreparedforaspecificaudienceorcontentforwhichlearningtakesacertainamountoftime.Alsotechnicalrestrictions(likeMimetypes)mightbeessential.Itmaybedesirabletosearchforapplicationsorformotivationsforacertainconcept.

StandardlearningobjectsmetadataschemaslikethosefromIEEEandIMSprovidethemeanstoencodethisinformationinastandardizedway.Thehigheffortinassigningthiskindofmetadatacontrastssharplywithitsdecreasedvaluewhenthecontentisreusedinadifferentcontext.Forexamplewhatwasintendedtobeamotivatingexamplewhichcanberunthroughbyaphysicsstudentwithlittleeffortmightbecomeanapplicationforamathematicsstudentthatrequiresconsiderableeffortstofillthegapsleftinthetext.Thesamemathematicsstudentwillhoweverhavenoproblemsunderstandingthetextwhenhereturnstoitlaterforasecondview.

8ExploitingSemanticRelations

Themethodsdiscussedsofarretrievemathematicalcontentbasedonfeaturesassignedtoindividualcontentpieces.Thisisnotenoughwhensmallpiecesofcontentaretoberetrievedforreuse.Piecesofcontentdonotliveinisolation.Theymakesenseonlyinanenvironmentwhichprovidesthenecessarycontextorprerequisites:Theoremshaveproofswhichmakeuseofothertheorems;exercisesrequireunderstandingofprevioustheoremsetc.

Modellingthisnetworkofinterrelationsgivesthepossibilityofcomposingmeaningfuldocumentsforspe-cificpurposes.SlicingBookTechnology,asinventedattheUniversityKoblenz-LandauandfurtherdevelopedintheISTprojectTrial-Solution,hasappliedthistoasmuchas5,000pagesofpre-existingmathematical

MKM-NET,IST-2001-370578

texts.

Ithasturnedoutthatthemostrelevantsemanticrelationsbetweenpiecesofcontentarebinary,thatistheyrelateonlytwopiecesofcontent.[3]describestherelationswhichhavebeenfoundtoberelevantinthatproject.Themostimportantofthemis“AreferencesB”withtheintendedmeaning“InordertounderstandA,Bmustbeunderstood”.

Theserelationsaswellaskeyphrasesandtypesofcontentthathavebeendiscussedbeforecanbecom-binedwithinformationabouttheuserfromausermodel.Thiscanbedonebyanautomatedinferenceengine.Thisinferenceenginemustalsoprocessa(small)setofgeneralruleswhichdescribethesetofcontentslicesthatshouldberetrievedforauserwithacertainobjectiveandacertainsortofuserprofile.Basedonthisinformationtheinferenceenginewillderiverecommendationsforcontenttobepresented.Theserecommen-dationscanbefurthermodifiedbytheuserortheycanbeusedtolaunchthedynamiccreationofanewdocumentfromtheselectedslicesonthefly.

Inthiswaysearchisnotinitiatedbyenteringaconcepttobesearchedfor(thoughthisaswellasfulltextsearchispossible)butbyarequesttoadaptaselectionofinterestingslicesautomaticallyforaspecificusecase.Alsothefinalresultofthesearchisnotacollectionofoccurrencesbutanewdocumentwiththeretrievedcontentthatdidnotexistbefore.

Therequiredbinaryrelationsbetweencontentslicescanonlyrarelybeassignedautomatically.Explicitreferencescanbefoundinthetextandusedforthispurpose,butusuallythereareonlyfewsuchreferences.Consequently,theymustbeassignedmanually.

ExperimentsintheTrial-Solutionprojectshowthatthiscanbedonebyexperiencedstudentsatanaveragespeedof15slicesperhour,includingtheassignmentofkeyphrasesandtypes.

Itisimportanttonotethatthiseffortisnotdoneforaparticularusergrouporusagescenario:whenreuseforanewpurposeorinanewcontextisrequired,itisonlynecessarytoadaptthegeneralrulesthatdescribetheintendedsearchresults.Therelationsandkeyphrasesassignedtothecontentslicesdonothavetoberevisedoradapted.

DemosandproductsusingthistechnologyhavebeenproducedbySlicingInformationTechnologyandareavailablethroughthecompany’swebsiteathttp://www.slicing-infotech.de.

9Summary

Themostwidelyusedmethodstosearchformathematicalcontentarecurrentlyfulltextsearchandsearchforkeyphrases.Usersareusedtothisandappreciatetheadditionalhelpthatonlineeditorsofferforthesetypesofsearch.SlicingBookTechnologyasexplainedintheprevioussectionisafurtherstepforward.Itcanbegraduallyintroducedasanextensionoftheuseofkeyphrases.Itdoesnotrequireanychangeofthecontentitself.Semanticsearchprovidesthetoolsforaprecisesearchformathematicalobjects,toexchangethesewithothersystemsandtoevaluatethem,butthistypeofsearchtypicallyrequiresrewritingthecontentcompletely.Complexsemanticsearchhastodealwiththeproblemofdealingwithsemanticallyequivalentobjects.Theirhandlingrequiresfurtherresearchandtoolswhicharemostlikelytoarisefromcomputeralgebrasystemsandautomatedtheoremprovers.Acombinationwithkeyphrasesearchmayadditionallyhelpsolvingtheproblemofensuringtherelevanceofthemathematicalobjectsretrieved.

References

[1]A.Asperti,F.Guidi,L.Padovani,C.Sacerdoti.SomestatisticalconsiderationsontheCoqlibrary.Draft,

UniversityofBologna.2003.[2]GrzegorzBancerek,P.Rudnicki.InformationRetrievalinMML.ProceedingsofthesecondInternational

ConferenceonMathematicalKnowledgeManagement,Bertinoro,Italy,February2003.LNCS2594,pp.119–131.

MKM-NET,IST-2001-370579

[3]I.Dahn.ManagementofInformalMathematicalKnowledge-LessonsLearnedfromtheTrial-Solution

Project.In:FengshaiBaiandBerndWegner(eds.):ElectronicInformationandCommunicationinMath-ematics,LNCSvol.2730,pp.29–43,2003[4]D.Delahaye.informationRetrievalinacoqprooflibraryusingTypeisomorphisms.InT.Coquandetal.

editors,TYPES,LNCS1956,pp.131-147,200.[5]F.Guidi.SearchingandRetrievinginContent-BasedRepositoriesofFormalMathematicalKnowledge,

Ph.D.ThesisinComputerScience,TechnicalReportUBLCS2003-06,UniversityofBologna,March2003.[6]F.Guidi,C.SacerdotiCoen.QueryingDistributedDigitalLibrariesofMathematics.InCalculemus

2003,AracneEditriceS.R.L.,Ther´eseHardinandRenaudRiobooeditors,ISBN88-7999-545-6,pp.43–57.[7]F.Guidi,I.Schena.AQueryLanguageforaMetadataFrameworkaboutMathematicalResources.Pro-ceedingsofthesecondInternationalConferenceonMathematicalKnowledgeManagement,Bertinoro,Italy,February2003.LNCS2594,pp.105–118.[8]M.Hazewinkel.Identificationcloudsandautomaticassignmentofkeyphrases:lessonslearnedfromthe

TRIALSOLUTIONproject.Internalpaper,Trial-Solution2003.[9]M.Kohlhase,A.Franke.MBase:RepresentingKnowledgeandContentfortheIntegrationofMathe-maticalSoftwareSystems.J.SymbolicComputation,32(4),2001,pp365–402.

因篇幅问题不能全部显示,请点此查看更多更全内容