您好,欢迎来到要发发知识网。
搜索
您的当前位置:首页高考集合知识点总结及典型例题

高考集合知识点总结及典型例题

来源:要发发知识网
1.集合的含义与表示

(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系

(1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;

(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用

二.【命题走向】

有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。

预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对。具体

三.【要点精讲】

1.集合:某些指定的对象集在一起成为集合

(1)集合中的对象称元素,若a是集合A的元素,记作aA;若b不是集合A的元素,记作bA;

(2)集合中的元素必须满足:确定性、互异性与无序性;

确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;

无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内;

描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法:

非负整数集(或自然数集),记作N; 正整数集,记作N或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R。 2.集合的包含关系:

(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或AB);

集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作A B;

*

(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2个子集(其中2-1个真子集); 3.全集与补集:

(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U; (2)若S是一个集合,AS,则,CS={x|xS且xA}称S中子集A的补集;

n

n

(3)简单性质:1)CS(CS)=A;2)CSS=,CS=S 4.交集与并集:

(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集AB{x|xA且xB}。

(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。并集AB{x|xA或xB}

注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。 5.集合的简单性质:

(1)AAA,A,ABBA;

(2)AA,ABBA;

(3)(AB)(AB);

(4)ABABA;ABABB;

(5)CS(A∩B)=(CSA)∪(CSB),CS(A∪B)=(CSA)∩(CSB)。

四.【典例解析】

题型1:集合的概念

(2009湖南卷理)某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__ 例1.已知全集UR,集合M{x2x12}和

N{xx2k1,k1,2,L}的关系的韦恩(Venn)图如图1所示,则阴影部分所示的

集合的元素共有( )

A. 3个 B. 2个 C. 1个 D. 无穷多个

1,3,有2个,选B. 解析 由M{x2x12}得1x3,则MN例2.集合A0,2,a,B1,a2,若AUB0,1,2,4,16,则a的值为



( )

题型2:集合的性质

例3.集合A0,2,a,B1,a2,若AUB0,1,2,4,16,则a的值为

( )

1.设全集U=R,A={x∈N︱1≤x≤10},B={ x∈R︱x+ x-6=0},则下图中阴影表示的集合为

( )

B.{3}

2



A.{2}

C.{-3,2} D.{-2,3}

2. 已知集合A={y|y-(a+a+1)y+a(a+1)>0},B={y|y-6y+8≤0},若A∩B≠φ,

2

2

2

2

则实数a的取值范围为( ).

例4.已知全集S{1,3,xx2x},A={1,2x1}如果CSA{0},则这样的实数

32x是否存在?若存在,求出x,若不存在,说明理由

题型3:集合的运算

例5已知函数f(x)定义域集合是B (1)求集合A、B

x122的定义域集合是A,函数g(x)lg[x(2a1)xaa]的x2(2)若AB=B,求实数a的取值范围.

例6.已知集合A1,3,5,7,9,B0,3,6,9,12,则AICNB( )

 A.1,5,7 B.3,5,7 C.1,3,9 D.1,2,3

题型4:图解法解集合问题

2y2xyx例7.(2009年广西北海九中训练)已知集合M=x|1,N=y|1,则

4329MN ( )

A.

B.{(3,0),(2,0)} D.3,2

C.3,3

五.【思维总结】

集合知识可以使我们更好地理解数学中广泛使用的集合语言,并用集合语言表达数学问题,运用集合观点去研究和解决数学问题。

1.学习集合的基础能力是准确描述集合中的元素,熟练运用集合的各种符号,如、、

、、=、CSA、∪,∩等等;

2.强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用Venn图解题方法的训练,加强两种集合表示方法转换和化简训练;解决集合有关问题的关键是准确理解集合所描述的具体内容(即读懂问题中的集合)以及各个集合之间的关系,常常根据“Venn图”来加深对集合的理解,一个集合能化简(或求解),一般应考虑先化简(或求解);

3.确定集合的“包含关系”与求集合的“交、并、补”是学习集合的中心内容,解决问题时应根据问题所涉及的具体的数学内容来寻求方法。

① 区别∈与、与、a与{a}、φ与{φ}、{(1,2)}与{1,2}; ② AB时,A有两种情况:A=φ与A≠φ

③若集合A中有n(nN)个元素,则集合A的所有不同的子集个数为2,所有真子集的个数是2-1, 所有非空真子集的个数是22

nnn④区分集合中元素的形式: 如A{x|yx22x1};

B{y|yx22x1};

C{(x,y)|yx22x1};

D{x|xx22x1};

E{(x,y)|yx22x1,xZ,yZ};

F{(x,y')|yx22x1}; yG{z|yx22x1,z}。

x⑤空集是指不含任何元素的集合。{0}、和{}的区别;0与三者间的关系。空集是任何集合的子集,是任何非空集合的真子集。条件为AB,在讨论的时候不要遗忘了

A的情况。

⑥符号“,”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系 ;符号“Ø,”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。

逻辑是研究思维形式及其规律的一门学科,是人们认识和研究问题不可缺少的工具,是为了培养学生的推理技能,发展学生的思维能力

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- net188.cn 版权所有 湘ICP备2022005869号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务