您的当前位置:首页正文

斌哥的 Docker 进阶指南—监控方案的实现

来源:要发发知识网

上一篇文章中介绍了 Docker 监控目的及技术基础,本篇文章将介绍,Docker 监控方案的实现。

Docker 监控方案的实现

  • 自己动手 + 开源软件
  • SaaS

评价标准

  • 功能

    • 信息详细程度

    • 查询的灵活程度

    • 报警 + API

  • 灵活性

    • 定制
  • 成本

    • 学习、开发

    • 维护

  • 运维

    • 部署复杂程度
  • 高可用

需要考虑的基本要素如上所示,不多述。

自己动手

  • 灵活性强
  • 成本高

这里的成本包括开发成本,开发成本可能包括招人和培训,开发时间和填坑时间。开发完了还需要维护成本,而且随着Docker的升级,可能还需要对metric的采集实现进行升级,以及各种bugfix。

自己动手打造监控方案

  • 采集
  • 存储
  • 展示
  • 报警(动作)

StatsD 具有以下优点:

  • 简单

首先安装部署简单,且StatsD 协议是基于文本的,可以直接写入和读取,方便实现各种客户端和SDK。

  • 低耦合性

StatsD 守护进程采取 UDP 这种无状态的协议,收集指标和应用程序本身之间没有依赖,不会阻塞应用,不管StatsD的状态是运行中,还是没在运行,都不会影响应用程序,应用程序也不关心StatsD是否收到数据。

  • 易集成

StatsD非常容易整合其他组件,可以自己编写采集业务逻辑,发送到StatsD守护进程即可。也就是说用户的工作很简单,只需要按定义好的规则采集数据发送到Stats,然后用Graphite存储、展示,通过使用Riemann进行报警。

Tcollector

  • 来源于OpenTSDB

Tcollector 是一个采集指标数据并保存到OpenTSDB的框架,你可以使用该框架自己编写采集的业务逻辑。类似StatsD,运行在客户端,收集本地的metric信息,推送到OpenTSDB。

Collectd

  • System statistics collection daemon
  • 存储到RRD
  • 插件机制(input/output)
  • 简单报警功能

Collectd即是一个守护进程,也是一个框架,类似StatsD,它性能非常好,采用C语言编写。Collectd不直接支持从Docker中取数据,但是我们可以自己编写插件来采集性能指标数据。

在4.3版本之后还支持简单的基于阈值检查的报警机制。

斌哥的 Docker 进阶指南—监控方案的实现

cAdvisor是一个用于收集、聚合处理和输出容器运行指标的守护进程。而且cAdvisor基本算是一个获取Docker性能数据的标配了吧。

斌哥的 Docker 进阶指南—监控方案的实现

一句命令就可以启动cAdvisor容器,访问8080端口即可看到性能指标数据。cAdvisor可以通过storage_driver参数将数据存到influxdb,同时也可以将metric输出为Prometheus的格式,所以很多自定义Docker监控系统都会采取cAdvisor + Prometheus 的组合。

存储TSDB

  • OpenTSDB
  • Influxdb
  • RRDTool
  • Graphite

关于时序列数据库,可以看附录中相关的介绍文章。推荐使用OpenTSDB或者Influxdb,简单对比一下各自特点如下:

  • OpenTSDB

    • Java & HBase
    • 易扩展(集群功能强大)
    • 机器多,运维稍显麻烦
  • Influxdb

    • Golang
    • 集群功能不太成熟
    • 有类SQL的查询语句
    • 单台即可工作

这两者都支持自由模式和多维度,非常适合用于采用tag机制的数据模式建模。
开源可视化工具

  • Graphite
  • Influxdb + Grafana
  • Prometheus

光有数据是不够的,raw data没有任何意义,我们需要良好的可视化组件来展示数据和数据的内在意义,发挥数据的作用。

我们也可以将数据存储和展示交给其他开源软件。

如果你的数据采集和存储都是自己来完成的,只想使用一个外部的图形化界面的话,选Grafana应该没错,Grafana展现形式非常丰富,配置也很灵活。

斌哥的 Docker 进阶指南—监控方案的实现

以上,先到这里。

下一章,刘斌将为大家介绍 Docker 监控的开原方案,主流 SaaS 服务,及其特点。